[Limdep Nlogit List] Exploded and negative wtp estimates

John C. Whitehead john.c.whitehead at gmail.com
Sun Oct 20 00:09:21 AEDT 2024


That’s a complicated model. What do the results look like when you estimate
a basic mixed logit.

 RPLOGIT
    ; Lhs = choice ; Choices = A, B, C
    ; Rhs = fortific,weight,certific,twosezon,manysezo,nprice
    ;Pds = 4
    ;halton ;pts=100
    ; Fcn = fortific(n),weight(n),certific(n),twosezon(n),manysezo(n),
nprice(n)$


On Sat, Oct 19, 2024 at 5:11 AM medard kakuru via Limdep <
limdep at mailman.sydney.edu.au> wrote:

> Dear All,
> Here is the syntax and the output of the generalized mixed logit model in
> preference space, using MNL starting values. As you can see, the wtp
> estimates are in hundreds of thousand yet my price attribute levels are in
> thousands. When I add "userp" (using ML starting values) to the syntax, I
> get reasonable wtp estimates (some in hundreds others in thousands) but
> three out five are negative and the standard deviations for all are
> extremely big- in hundreds of thousand.
> Please advise.
>
> CREATE ; nprice = -price $ ? make the price attribute negative
> |-> calc ; ran(10000) $  ?seeding
> |-> GMXLOGIT
>     ; Lhs = choice ; Choices = A, B, C
>     ; Rhs = fortific,weight,certific,twosezon,manysezo,nprice
>     ;Pds = 4
>     ;gmx
>     ;tau=0.1
>     ;gamma=0.1
>     ;halton ;pts=100
>     ; corr ;Parameters
>     ; Fcn = fortific(n),weight(n),certific(n),twosezon(n),manysezo(n),
> nprice(n)
>     ; WTP =
>
> fortific/nprice,weight/nprice,certific/nprice,twosezon/nprice,manysezo/nprice
> $ ? estimate individual-specific wtp estimate
> Iterative procedure has converged
> Normal exit:   6 iterations. Status=0, F=    .9000622D+03
>
>
> -----------------------------------------------------------------------------
> Start values obtained using MNL model
> Dependent variable               Choice
> Log likelihood function      -900.06222
> Estimation based on N =   1076, K =   6
> Inf.Cr.AIC  =   1812.1 AIC/N =    1.684
> ---------------------------------------
>             Log likelihood R-sqrd R2Adj
> Constants only   -985.1678  .0864 .0739
> Note: R-sqrd = 1 - logL/Logl(constants)
> Warning:  Model does not contain a full
> set of ASCs. R-sqrd is problematic. Use
> model setup with ;RHS=one to get LogL0.
> ---------------------------------------
> Response data are given as ind. choices
> Number of obs.=  1076, skipped    0 obs
>
> --------+--------------------------------------------------------------------
>         |                  Standard            Prob.      95% Confidence
>   CHOICE|  Coefficient       Error       z    |z|>Z*         Interval
>
> --------+--------------------------------------------------------------------
> FORTIFIC|     .32357***      .08072     4.01  .0001      .16537    .48178
>   WEIGHT|    -.27733***      .09413    -2.95  .0032     -.46182   -.09285
> CERTIFIC|    1.60380***      .11305    14.19  .0000     1.38223   1.82536
> TWOSEZON|     .78121***      .12545     6.23  .0000      .53533   1.02708
> MANYSEZO|    1.44881***      .11970    12.10  .0000     1.21419   1.68342
>   NPRICE|-.61331D-04*     .3452D-04    -1.78  .0756 -.12899D-03  .63316D-05
>
> --------+--------------------------------------------------------------------
> nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx.
> ***, **, * ==>  Significance at 1%, 5%, 10% level.
> Model was estimated on Oct 19, 2024 at 11:49:37 AM
>
> -----------------------------------------------------------------------------
>
> Line search at iteration 53 does not improve the function
> Exiting optimization
>
>
> -----------------------------------------------------------------------------
> Generalized Mixed (RP) Logit Model
> Dependent variable               CHOICE
> Log likelihood function      -826.91886
> Restricted log likelihood   -1182.10682
> Chi squared [ 29](P= .000)    710.37593
> Significance level               .00000
> McFadden Pseudo R-squared      .3004703
> Estimation based on N =   1076, K =  29
> Inf.Cr.AIC  =   1711.8 AIC/N =    1.591
> ---------------------------------------
>             Log likelihood R-sqrd R2Adj
> No coefficients -1182.1068  .3005 .2909
> Constants only   -985.1678  .1606 .1492
> At start values  -899.3489  .0805 .0680
> Note: R-sqrd = 1 - logL/Logl(constants)
> Warning:  Model does not contain a full
> set of ASCs. R-sqrd is problematic. Use
> model setup with ;RHS=one to get LogL0.
> ---------------------------------------
> Response data are given as ind. choices
> Replications for simulated probs. = 100
> Used Halton sequences in simulations.
> RPL model with panel has     269 groups
> Fixed number of obsrvs./group=        4
> BHHH estimator used for asymp. variance
> Number of obs.=  1076, skipped    0 obs
>
> --------+--------------------------------------------------------------------
>         |                  Standard            Prob.      95% Confidence
>   CHOICE|  Coefficient       Error       z    |z|>Z*         Interval
>
> --------+--------------------------------------------------------------------
>         |Random parameters in utility
> functions..............................
> FORTIFIC|    1.50696***      .54611     2.76  .0058      .43662   2.57731
>   WEIGHT|    -.20769         .56298     -.37  .7122    -1.31111    .89573
> CERTIFIC|    9.07085***     1.59825     5.68  .0000     5.93834  12.20335
> TWOSEZON|    5.26384***     1.05771     4.98  .0000     3.19076   7.33692
> MANYSEZO|    8.40225***     1.58085     5.32  .0000     5.30384  11.50067
>   NPRICE|     .00063***      .00024     2.63  .0086      .00016    .00110
>         |Diagonal values in Cholesky matrix,
> L...............................
> NsFORTIF|    4.97379***     1.17328     4.24  .0000     2.67420   7.27337
> NsWEIGHT|     .41995        1.33312      .32  .7528    -2.19292   3.03281
> NsCERTIF|    4.06231***     1.47632     2.75  .0059     1.16877   6.95584
> NsTWOSEZ|    5.15553***     1.34628     3.83  .0001     2.51686   7.79420
> NsMANYSE|    1.40139        1.40002     1.00  .3168    -1.34259   4.14538
> NsNPRICE|     .00101***      .00029     3.54  .0004      .00045    .00157
>         |Below diagonal values in L matrix. V =
> L*Lt.........................
> WEIG:FOR|   -1.48938*        .88668    -1.68  .0930    -3.22725    .24849
> CERT:FOR|   -2.51743        1.59438    -1.58  .1143    -5.64236    .60749
> CERT:WEI|    4.19613**      1.80622     2.32  .0202      .65600   7.73626
> TWOS:FOR|    2.95810***     1.06047     2.79  .0053      .87962   5.03659
> TWOS:WEI|     .95649        1.46272      .65  .5132    -1.91039   3.82337
> TWOS:CER|   -2.25893*       1.29302    -1.75  .0806    -4.79321    .27535
> MANY:FOR|    -.32904        1.13783     -.29  .7724    -2.55915   1.90107
> MANY:WEI|    3.19079*       1.85861     1.72  .0860     -.45202   6.83360
> MANY:CER|   -6.35832***     1.52035    -4.18  .0000    -9.33814  -3.37849
> MANY:TWO|   -7.79234***     1.74477    -4.47  .0000   -11.21203  -4.37265
> NPRI:FOR|    -.00020         .00025     -.80  .4223     -.00068    .00029
> NPRI:WEI|     .00121**       .00047     2.57  .0101      .00029    .00214
> NPRI:CER|    -.00072*        .00042    -1.69  .0908     -.00155    .00011
> NPRI:TWO|    -.00051         .00037    -1.37  .1714     -.00123    .00022
> NPRI:MAN|     .00027         .00043      .62  .5331     -.00058    .00112
>         |Covariances of Random
> Parameters....................................
> TauScale|    1.13115***      .10543    10.73  .0000      .92452   1.33779
>         |Weighting parameter gamma in GMX
> model..............................
> GammaMXL|    -.22613**       .09949    -2.27  .0230     -.42113   -.03113
>         |  Sample Mean    Sample
> Std.Dev.....................................
> Sigma(i)|     .97097        1.32745      .73  .4645    -1.63079   3.57272
>         |Standard deviations of parameter
> distributions......................
> sdFORTIF|    4.97379***     1.17328     4.24  .0000     2.67420   7.27337
> sdWEIGHT|    1.54746         .97110     1.59  .1110     -.35587   3.45078
> sdCERTIF|    6.35982***     1.75250     3.63  .0003     2.92499   9.79465
> sdTWOSEZ|    6.43020***     1.24563     5.16  .0000     3.98881   8.87159
> sdMANYSE|    10.6490***     1.97084     5.40  .0000      6.7863   14.5118
> sdNPRICE|     .00184***      .00036     5.15  .0000      .00114    .00253
>         |Covariances of Random
> Parameters....................................
> WEIG:FOR|   -7.40788        5.39137    -1.37  .1694   -17.97476   3.15901
> CERT:FOR|   -12.5212       10.38866    -1.21  .2281    -32.8826    7.8402
> CERT:WEI|    5.51158        7.31301      .75  .4510    -8.82166  19.84481
> TWOS:FOR|    14.7130*       7.61270     1.93  .0533      -.2076   29.6336
> TWOS:WEI|   -4.00408        4.20688     -.95  .3412   -12.24941   4.24125
> TWOS:CER|   -12.6097        9.77976    -1.29  .1973    -31.7777    6.5582
> MANY:FOR|   -1.63656        5.54775     -.29  .7680   -12.50996   9.23684
> MANY:WEI|    1.83003        5.29230      .35  .7295    -8.54268  12.20274
> MANY:CER|   -11.6121       11.85646     -.98  .3274    -34.8504   11.6261
> MANY:TWO|   -23.7320*      13.89019    -1.71  .0875    -50.9563    3.4923
> NPRI:FOR|    -.00099         .00132     -.75  .4552     -.00358    .00161
> NPRI:WEI|     .00080         .00187      .43  .6677     -.00287    .00448
> NPRI:CER|     .00267         .00449      .60  .5518     -.00612    .01146
> NPRI:TWO|    -.00042         .00295     -.14  .8871     -.00620    .00536
> NPRI:MAN|     .01282**       .00637     2.01  .0443      .00033    .02531
>
> --------+--------------------------------------------------------------------
> ***, **, * ==>  Significance at 1%, 5%, 10% level.
> Model was estimated on Oct 19, 2024 at 11:54:35 AM
>
> -----------------------------------------------------------------------------
>
>
>
> --------+-----------------------------------------------------
> Cor.Mat.|FORTIFIC   WEIGHT CERTIFIC TWOSEZON MANYSEZO   NPRICE
> --------+-----------------------------------------------------
> FORTIFIC| 1.00000  -.96247  -.39583   .46003  -.03090  -.10825
>   WEIGHT| -.96247  1.00000   .56003  -.40240   .11105   .28338
> CERTIFIC| -.39583   .56003  1.00000  -.30834  -.17146   .22877
> TWOSEZON|  .46003  -.40240  -.30834  1.00000  -.34658  -.03546
> MANYSEZO| -.03090   .11105  -.17146  -.34658  1.00000   .65585
>   NPRICE| -.10825   .28338   .22877  -.03546   .65585  1.00000
>
> Saved Individual Estimates of WTP in matrix WTP_I [ 269x5]
> Alternative   Attribute   Income/Cost
>      Chosen    FORTIFIC       NPRICE
>      Chosen      WEIGHT       NPRICE
>      Chosen    CERTIFIC       NPRICE
>      Chosen    TWOSEZON       NPRICE
>      Chosen    MANYSEZO       NPRICE
> (Saved absolute values. Check signs of coefficients.)
> |-> MATRIX ; List ; 1/269*1'wtp_i $ ?mean wtp
>
>   RESULT|             1             2             3             4
>   5
>
> --------+----------------------------------------------------------------------
>        1|      -208387.       63355.3      -155431.      -109576.
>  -33803.6
>
>
> On Fri, Oct 18, 2024 at 6:11 PM Arthur Caplan via Limdep <
> limdep at mailman.sydney.edu.au> wrote:
>
> > Hello Medard,
> >
> > It might help if you shared the code you are using.
> >
> > Arthur Caplan
> >
> >
> > Department of Applied Economics
> > Utah State University
> > 4835 Old Main Hill
> > Logan, Utah 84322-4835
> > tel: 435-797-0775
> > web: https://url.au.m.mimecastprotect.com/s/7A4aCp81lrtxz9QB8iPf1FGeER7?domain=sites.google.com
> > ________________________________
> > From: Limdep <limdep-bounces at mailman.sydney.edu.au> on behalf of medard
> > kakuru via Limdep <limdep at mailman.sydney.edu.au>
> > Sent: Thursday, October 17, 2024 11:58 PM
> > To: Limdep and Nlogit Mailing List <limdep at mailman.sydney.edu.au>
> > Cc: medard kakuru <medakseth at gmail.com>
> > Subject: Re: [Limdep Nlogit List] Exploded and negative wtp estimates
> >
> > Greetings to you all!
> > I estimated wtp using three models: RPL, Generalised mixed logit in
> > preference space and in wtp space. My estimates are extremely big - I
> have
> > tried the normal, triangular and log normal distributions. They become
> > bigger if I use more than 100 random draws, halton draws don't make them
> > any better. Secondly, they are negative yet the MNL estimates are
> positive
> > and my price parameter is negative. What could be the reason/problem for
> > negative and explosive wtp estimates?
> >
> >
> > Best regards,
> >
> > Medard
> >
> > >
> > >
> > >
> > _______________________________________________
> > Limdep site list
> > Limdep at mailman.sydney.edu.au
> > http://limdep.itls.usyd.edu.au
> >
> > _______________________________________________
> > Limdep site list
> > Limdep at mailman.sydney.edu.au
> > http://limdep.itls.usyd.edu.au
> >
> >
> _______________________________________________
> Limdep site list
> Limdep at mailman.sydney.edu.au
> http://limdep.itls.usyd.edu.au
>
>


More information about the Limdep mailing list