

A Novel Solid Phase Sample Preparation Method for Lipidomic Analysis of Plasma Samples

<u>Alex Apffel</u>, Limian Zhao, Mark Sartain Agilent Technologies, Inc.

For Research Use Only. Not for use in diagnostic procedures.

1

Emerging Trends in Plasma Lipidomics

- Lipids are implicated in a wide range of key biological processes
- Mass Spectrometric based studies play a key role for:

• Basic biological research

- Translational studies
- Translational Research will require high throughput. Sample Preparation is a bottle-neck
- Automated sample preparation methods are an enabling technology both in terms of throughput and reproducibility

Overview of Conventional Liquid-Liquid Extraction (LLE) Methods

- Conventional lipid extraction protocols are based on liquid extraction methods with non-polar solvents like chloroform, MTBE or butanol.
- LLE methods require phase separation and are difficult to automate.
- More recently, a single phase butanol/methanol (BUME) method has been implemented. This method requires centrifugation for pelleting of precipitate.

	Folch ¹	Bligh-Dyer ²	Maytash ³	BUME ³
Organic:MeOH:Water	8:4:3	2:2:1.8	10:3:2.5	1:1 (single phase)
Sample (mL)	0.1	0.1	0.1	0.1
Methanol (mL)	0.53	.68	0.38	0.45
Organic Solvent (mL)	1.06	.68	1.29	0.45
Water (mL)	0.4	0.62	0.32	NA
Organic Solvent:	Chloroform	Chloroform	MTBE	Butanol/MeOH 5mM Am.Acetate

- 1. Folch, J., et al., J Biol Chem 226, 497-509 (1957).
- 2. Bligh, E. G. & Dyer, W. J.. Can J Biochem Physiol 37, 911-917, doi:10.1139/o59-099 (1959).
- 3. Maytash, V., et al., J Lipid Res 49, 1137-1146, doi:10.1194/jlr.D700041-JLR200 (2008).
- 4. Alshehry, Z. H. et al., Metabolites 5, 389-403, doi:10.3390/metabo5020389 (2015).

EMR-Lipidomics Sorbent

- Based on Captiva EMR-Lipid (Enhanced Matrix Removal) Material
- The EMR-Lipid sorbent is used to remove lipids from a range of sample matrices for analysis of small molecules.
- Retention of lipids is based on a combination of size exclusion and hydrophobic interaction mechanisms.
- Proteins precipitated from sample are retained by a filtration process.

Captiva EMR-Lipidomics Protocol

Positive Pressure Manifold 48 Processor (PPM-48)

Analytical Workflow

1. Build a Database

- a) A pool of all samples was analyzed using iterative LC/MS/MS in positive and negative mode.
- b) Data processed with Agilent Lipid Annotator. Results used to generate PCDL database with reference values of accurate mass and retention times values for each identified lipid.

2. Profile and Identify

- a) All individual samples analyzed by LC/MS in triplicate in positive and negative mode.
- b) Data processed in MassHunter Profinder using a Batch Targeted Feature Extraction with the PCDL database generated by Lipid Annotator.
- c) Results transferred to Mass Profiler Professional for statistical analysis

LC/MS Method

Chromatographic Conditions

Agilent 1290 Infinity II LC

Parameter	Agilent 1290 Infinity II LC		
Analytical column	Agilent InfinityLab Poroshell 120 HPH-C18 2.0x150mm, 2.7um (693775-702)		
Guard column	Agilent Poroshell HPH-C18, 3.0 mm, UHPLC Guard (823750-928)		
Column temperature	60°C		
Injection volume	1µl		
Autosampler temperature	5°C		
Needle wash	15 seconds in wash port (50:50 methanol:isopropanol)		
Mobile phase	A) 10mM Ammonium Acetate, 10uM Medronic Acid 9:1 water:methanol B) 10mM Ammonium Acetate, 2:2:6 acetonitrile:methanol:isopropanol		
Flow rate	0.6 ml/min		
Gradient program	Time(min) %B 0.0 55 5.0 57 25.0 100 27.0 100 28.0 55		
Stop time	30 minutes		
Post time	5 minutes		
Observed column pressure	300-600bar		

LC/MS Method

Mass Spectrometry Conditions

Parameter	Agilent 6545 Q-TOF with Dual Agilent Jet Stream Source		
Instrument mode	2 GHz, extended dynamic range, m/z 1,700		
Polarity	Positive and Negative		
Gas temperature	250°C		
Drying gas (nitrogen)	11 L/min		
Nebulizer gas	35 psi		
Sheath gas	300°C @ 12 L/min		
Capillary voltage	3,500 ∨ (+), 3,000 ∨ (-)		
Nozzle voltage	500 V		
Fragmentor	160 V		
Oct 1 Rf Vpp	750 V		
Acquisition speed	MS-Only: 3 spectra/second (MS) Auto MS/MS: 3 spectra/second (MS), 4 spectra/second (MS/MS)		
Auto MS/MS parameters	Isolation width: Narrow (~1.3 amu) Collision energy: 20, 35 eV		
Reference correction	2 points at m/z 121.050873(+), 922.009798(+) 2 points at m/z 119.036320(-), 980.016375(-)		

Reversed Phase UHPLC/MS

Merged EICs

- Negative Ion QTOF LC/MS Positive Ion QTOF LC/MS **EMR-Lipidomics** Folch **Bligh-Dyer** Maytash BUME
- RP-UHPLC/MS provides fast, high-resolution acyl-chain length based separation of a wide range of lipids over many lipid classes.
- Positive and negative Ionization modes provide complementary information.
- Column stability and retention-time reproducibility enables resolution of isobaric lipid isomers.
- Within-class resolution reduces coelution based ion suppression.
- Accurate relative quantitation will require use of isotopically labeled internal standards (e.g. Splash Lipidomix)

Automated Iterative MS/MS

Agilent Lipid Annotator Software

- Product ion spectral matching against *in silico*-generated databases.
- Utilizes theoretical lipid library (modified LipidBlast) developed by Kind et al.⁵
- Based on combination of Bayesian scoring, probability density and nonnegative least squares fit.
- Special care to not over-annotate.
 - Lipid sum composition is identified if specific acyl chain compositions are not confirmed by MS/MS Data.
 - Only report results supported by data!
- Produces accurate mass and retention time database (PCDL) for subsequent LC/MS searching.

5) Kind, T. et al., Nature methods 10, 755, doi:10.1038/nmeth.255

For more information, see Jeremy Koelmel (ThOA am 9:10)

EMR-Lipidomics extraction yields lipid coverage qualitatively and quantitatively comparable to conventional LLE extraction approaches

% by summed area # individual species

Lipid Class Comparison

- There are differences in abundance within lipid classes between LLE methods and the EMR-Lipidomics method
- There are differences in abundances within lipid classes between individual LLE methods.
- EMR-Lipidomics shows quantitatively higher levels of TG, PC, and LPC.
- EMR-Lipidomics method shows quantitatively lower levels of FA, PE, PI, PS.

Log2 Abundance

Sterols and short acyl chains are not well retained by EMR-Lipidomics Cartridge

EMR-Lipidomics retention mechanism requires acyl chain stearic/hydrophobic interaction.

- .:. Unretained* by EMR-Lipidomics Sorbent:
 - Short chain acyl carnitines (positive ion)
 - Sterols (e.g. cholesterol) not shown
 - Short chain fatty acids (negative ion) not shown *recovered in flow through for analysis

Different sample preparation techniques show different selectivities

- Absolute abundances of extracted lipids show variation as a function of the extraction method.
- The variation between EMR-Lipidomics method and specific LLE methods is comparable to the differences between individual LLE Methods.

EMR-Lipidomics protocol improves reproducibility for manual sample preparation.

PCA Component 1 (52.1%)

EMR-Lipidomics Method yields improved reproducibility

	Average Peak Area RSD (All Identified Features)				
	EMR-Lipidomics	LLE Folch	LLE Bligh-Dyer	LLE Maytash	LLE BUME
LC/MS Replicates	6.4%	6.3%	5.8%	7.1%	6.0%
Extraction Replicates	9.4%	12.2%	22.6%	11.2%	19.8%

EMR-Lipidomics method simplifies and accelerates sample processing

	EMR-Lipidomics	Liquid-Liquid Extraction
Coverage	+++	+++
Selectivity ¹	+++	+++
Time (batch of 1-48 Samples) ²	30 minutes	60-90 minutes
Ease of Use	++	_
Reproducibility	<10% RSD	10-20% RSD
Ease of Automation	+++	_

1. Selective isolation of lipids in complex matrix

2. Not including 1-2 hours N_2 Drying time.

Conclusions

- EMR-Lipidomics solid phase extraction yielded lipid coverage qualitatively and quantitatively comparable to conventional LLE approaches.
- EMR-Lipidomics method shows improved ease-of-use and reproducibility compared to conventional LLE approaches.
- The combination of Agilent LC-QTOF MS/MS, Lipid Annotator and Mass Profiler Professional provides a complete untargeted lipidomics workflow. The addition of the EMR-Lipidomics Method for sample preparation further enhances that workflow.

• Future development will focus on automation of the EMR-Lipidomics Protocol

Acknowledgements

Thanks to the help and contributions from:

- Agilent Technologies
- Limian Zhao
- Mark Sartain
- Christine Miller
- Dan Cuthbertson
- Derick Lucas
- Genevieve Van de Bittner
- Laurakay Bruhn
- Sarah Stow
- Sheher Mohsin
- Prof. Xianlin Han and Dr. Chunyan Wang, University of Texas Health Science Center at San Antonio

For more information, see:

- MP 505: A New Lipidomics Software Workflow
 Demonstrates Disrupted Lipogenesis Induced with Drug
 Treatment in Leukemia Cells Mark Sartain
- ThOA am 9:10: Lipid Annotator: a Rapid, Accurate, and User-Friendly Software for Comprehensive LC-HRMS/MS Lipidomics –Jeremy Koelmel
- **ThP 398:** Lipid Annotator: a Rapid, Accurate, and User-Friendly Software for Comprehensive LC-HRMS/MS Lipidomics – Sarah Stow
- **TP 039:** Proteomic and lipidomic analysis reveals altered fatty acid metabolism in the liver of the symptomatic Niemann-Pick, type C1 mouse model Melissa Pergande

Title Slide with Image Arial: 28 pt Title Case

Subtitle Arial: 21 pt sentence case

Presenter's Name Arial: 18 pt Presenter's Title Arial: 16 pt Manually Formatted Date Arial: 16 pt Manually Formatted

Content Slide Arial: 28 pt Title Case

First Level Arial: 21 pt sentence case

- Second Level Arial: 19 pt sentence case
 - Third Level Arial: 17 pt sentence case
 - Fourth Level Arial: 17 pt sentence case
 - Fifth Level Arial: 15 pt sentence case