<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p class="MsoNormal" style="text-align:justify"><span
        style="mso-ansi-language: EN-US">Dear colleagues,</span></p>
    <span style="mso-ansi-language: EN-US">We would like to draw your
      attention to the <b style="mso-bidi-font-weight:normal">28th IUGG
        General Assembly</b>, <b style="mso-bidi-font-weight:normal">11-20
        July 2023, Berlin</b> and our session </span><span
      style="mso-ansi-language: EN-US"><span style="mso-ansi-language:
        EN-US"><b style="mso-bidi-font-weight:normal">S18 </b></span>titled<b
        style="mso-bidi-font-weight:normal">  “Integrating Seismic
        Tomography with Mineral Physics and Potential Fields to Describe
        the Crust and Upper Mantle Physical State”</b>.</span>
    <p class="MsoNormal" style="text-align:justify"><span
        style="mso-ansi-language: EN-US">We welcome your contributions
        that discuss advances, challenges, and applications in the
        interpretation of seismic tomography by using seismology
        independent observations to understand the dynamics of the
        lithosphere (details below). </span></p>
    <p class="MsoNormal" style="text-align:justify"><span
        style="mso-ansi-language: EN-US">The <b
          style="mso-bidi-font-weight:normal">abstract submission
          deadline is 14 February, 2023</b>. For more information,
        please visit </span><span lang="EN-GB"><a href="https://protect-au.mimecast.com/s/VTJ4Cr81nytAvA269C7mhTC?domain=iugg2023berlin.org/"><span
            style="mso-ansi-language:EN-US" lang="EN-US">https://www.iugg2023berlin.org/abstract-submission/</span></a></span><span
        style="mso-ansi-language:EN-US">. </span></p>
    <p class="MsoNormal" style="text-align:justify"><span
        style="mso-ansi-language: EN-US">Best wishes from the conveners<br>
      </span></p>
    <p class="MsoNormal" style="text-align:justify"><span
        style="mso-ansi-language:EN-US">Judith Bott, Ajay Kumar,
        Magdalena Scheck-Wenderoth, Ulrich <span
          style="color:black;mso-themecolor:text1">Achauer</span></span></p>
    <p class="MsoNormal" style="text-align:justify"><span
        style="mso-ansi-language: EN-US">---------------</span><b><span
          style="mso-ansi-language: EN-US"><br>
        </span></b></p>
    <p class="MsoNormal" style="text-align:justify"><i><span
          style="mso-ansi-language: EN-US">Session description </span></i></p>
    <p class="MsoNormal" style="text-align:justify"><i><span
          style="mso-bidi-font-style: normal"><span
            style="mso-ansi-language:EN-US">To understand plate
            tectonics as driven by mantle thermodynamics and
            gravitational forces at interplay with rock rheology, we
            need comprehensive images of the in-situ physical properties
            (density, viscosity) and underlying state conditions
            (pressure, temperature) of the lithospheric plate and its
            transition into the upper mantle. Once the present-day
            physical state of such a system is defined, the intrinsic
            deviatoric stress field and the mantle sources of heat
            contributing to active plate deformation can be calculated.
            One key insight into the crust and upper mantle physical
            state is provided by seismology, namely tomography imaging
            of seismic velocity perturbations. Their interpretation in
            terms of composition and temperature conditions, however, is
            highly non-unique. Despite an ever-growing amount of
            laboratory-derived relationships between the seismic
            velocity of mantle minerals and their pressure and
            temperature derivatives of density and elastic constants,
            inversion of seismological information for in-situ bulk rock
            temperature is an ill-posed problem. In addition, effects of
            anelasticity, e.g., frequency-dependent wave velocity, grain
            size and fluid content, are important, but less well
            explored. To reduce the number of potential solutions,
            additional independent information on crustal configuration
            and mantle composition, temperature, pressure and density
            can help. As alternative to thermodynamics-based inversions,
            empirical approaches to calculate mantle temperature from
            seismic tomography models implicitly assume some fixed
            mantle composition or calibrate tomography models with
            respect to thermal models of the lithosphere and/or
            pressure-temperature estimates from mantle xenoliths. With
            this session, we intend to resume an open discussion on how
            to best exploit mantle seismic velocity models to derive
            conclusions on the composition and pressure-temperature
            conditions within the upper (including lithospheric) mantle.
            We invite contributions integrating multidisciplinary data
            on the crust and mantle (geological, seismic, heat flow,
            potential fields, xenoliths) with tomographic models to
            identify rheological variability exerting the most
            significant impacts on crustal and surface deformation.</span></span></i></p>
    <p></p>
    <pre class="moz-signature" cols="72">-- 
Dr. Ajay Kumar
Section 4.5, Basin Modelling
Phone: +49 (0)331/2882828
Fax: +49 (0)331/2882828
Email: <a class="moz-txt-link-abbreviated" href="mailto:kumar@gfz-potsdam.de">kumar@gfz-potsdam.de</a>
___________________________________

Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences
Foundation under public law of the federal state
of Brandenburg
Telegrafenberg, D-14473 Potsdam</pre>
  </body>
</html>